Practice problems 1:

Identify the quadrants for the following angles:

1	$1 \mathrm{rad}=$
2	$2 \mathrm{rad}=$
3	$3 \mathrm{rad}=$
4	$100^{\circ}=$
5	$366^{\circ}=$
6	$\frac{\pi}{3} \mathrm{rad}=$
7	$-\frac{\pi}{6} \mathrm{rad}=$
8	$\left(\pi+\frac{\pi}{3}\right) \mathrm{rad}=$
9	$-120^{\circ}=$
10	$\left(\frac{11 \pi}{6}\right) \mathrm{rad}=$

answers: 1. Q1, 2. Q2, 3. Q2, 4. Q2, 5. Q1, 6. Q1, 7. Q4, 8. Q3, 9. Q3, 10. Q4

Convert the following from degrees to radians or radians to degrees:
(hint. if an angle does not show it is in degrees or radians, assume it is in radians!)

$$
\begin{array}{ll}
1 & 90^{\circ}= \\
2 & 270^{\circ}= \\
3 & \pi r a d= \\
4 & \frac{\pi}{6} \mathrm{rad}= \\
5 & \frac{7 \pi}{6} \mathrm{rad}= \\
6 & \frac{4 \pi}{3} \mathrm{rad}= \\
7 & -\frac{5 \pi}{6} \mathrm{rad}= \\
8 & 4.678 \mathrm{rad}= \\
9 & 139^{\circ}= \\
10 & 8 \pi=
\end{array}
$$

answers: $1 . \Pi / 2,2.3 \Pi / 2,3.180 \mathrm{deg}, 4.30 \mathrm{deg}, 5.210 \mathrm{deg}, 6$. 240deg
7. -150deg, 8. 268deg, 9. 2.426rad, 10. 1440deg

Determine if the following angles are coterminal:
30으으응
$1180^{\circ}, 100^{\circ}$?
48ㅇ, 722ㅇ?
$-\Pi / 3 \mathrm{rad}, 5 \Pi / 3 \mathrm{rad}$?
answers: 1. Y, 2. Y, 3. N, 4. Y
Convert the following angles to the reference angle. Give the quadrant and angle in degrees.

| | angle ref quad | |
| :--- | :--- | :--- | :--- |
| 1. | 150^{0} | |
| 2. | 317^{0} | |
| 3. | -125^{0} | |
| 4. | 68^{0} | |
| 5. | 780° | |

1. 30, Q2, 2. 43, Q4, 3. 55, Q3, 4. 68, Q1, 5. 60, Q1

Solve the following:

1. You have a wheel that is spinning at $5 \mathrm{rev} / \mathrm{min}$. What is its angular velocity in rad $/ \mathrm{min}$?
2. A drill bit is turning at $30 \mathrm{rev} / \mathrm{sec}$. How many rev/hour is it spinning?
3. A jet engine is spinning at $5000 \mathrm{Rev} / \mathrm{min}$. What is the linear velocity in feet/min of a blade on the turbine that is 2 feet from the center?
4. A moon is located 1000 miles from the core of a small planet it is revolving around. It makes three complete revolutions around the planet per week. What is its angular velocity in radians/week and what is its linear velocity in miles per week?
5. A clock spontaneously fell off the wall in a classroom, witnessed by fifty students. It was a completely random event and the teacher had absolutely nothing whatsoever to do with it. The clock fell to the floor and was permananently stopped at 3:30. The repair shop decided not to replace the clock because they argue it will still give the correct time twice a day and that's good enough. The trig teacher decides to take advantage of a bad situation and asks the students to solve this problem. What is the angle in degrees between the big hand and the little hand on that clock at $3: 30$?
6. A windmill is rotating at a rate of $22 \mathrm{rev} / \mathrm{min}$. If it's blades are 130 feet in length (radius of the fan), what is the linear velocity in yards/hour of a point at the end of the blades?
7. A drive train wheel whose radius is 10 feet is rotating at 70 turns per second. Another wheel whose radius is 4 feet is in contact with and is being driven by that wheel. What is the Linear velocity in feet per second of a point on the edge of the smaller wheel and how many rotations per second is it turning?
8. A 26 inch radius bicycle wheel is moving along the ground at 5 feet/sec. What is its angular velocity in rotations/minute?
9. NASA decides to build a rotating space station (big wheel) that has a radius of 500 feet. If the plan is to rotate the station one complete rotation every 2 minutes, What will be the linear velocity in feet per second of a person standing in the rotating section?
10. A tallest ferris wheel in the world, the 541 foot diameter Singapore Flyer, takes $1 / 2$ hour to make one complete revolution. How many feet per minute are the passengers moving?

Answers: 1.

2.

3.
$L V=\frac{5000 \text { yev }}{m i n} \times \frac{2 \pi \text { rad }}{1 \text { ret }} \times \frac{2 \mathrm{ft}}{y a d}=\frac{20000 \Pi \mathrm{ft}}{\mathrm{min}}$
4.
radius $=\mathbf{1 0 0 0} \mathbf{~ m i}$

5.

6.

7.

$$
\begin{aligned}
& A V(\text { small wheel })=\frac{L V}{\text { Radius }}=\frac{\frac{1400 \mathrm{Tft}}{\mathrm{sec}}}{\frac{4 \mathrm{ft}}{\mathrm{rad}}}=\frac{1400 \pi \mathrm{ft}}{\mathrm{sec}} \times \frac{\mathrm{rad}}{4 f t t_{\prime}^{\prime}} \text { : } \\
& =\frac{350 \mathrm{mrad}}{\mathrm{sec}} \\
& A V(\text { rev } / \mathrm{sec})=\frac{350 \text { er fad }}{\mathrm{sec}} \times \frac{1 \mathrm{rev}}{2 \text { r' }^{\prime} \mathrm{f}^{\prime} \mathrm{d}}=\frac{175 \mathrm{rev}}{\mathrm{sec}}
\end{aligned}
$$

8.

$$
\begin{array}{ll}
L V=A V X R & 2.308 \mathrm{rad} / \mathrm{sec} \\
A V=L V / R &
\end{array}
$$

9.

$$
L V=\frac{1 \text { res }}{2 \mathrm{~min}} \times \frac{2 \pi \cdot \mathrm{sad}}{\text { ret }} \times \frac{500 \mathrm{ft}}{\text { fad }} \times \frac{1 \mathrm{~min}}{60 \mathrm{sec}}=\frac{8.34 \mathrm{mft}}{\mathrm{sec}}
$$

10.

